Question 8. The atomic masses of He and Ne are 4 and 20 amu respectively. The value of the de Broglie wavelength of He gas at -73° C is 'M' times that of the de Broglie wavelength of Ne at 727° C 'M' is.

de Broglie's wavelength of a particle when kinetic energy (K.E) and mass (m) are given:

 $\lambda = h / \sqrt{2K.E} m$

Given:

Mass of He atom (m_{He}) = 4 amu

Mass of He atom (m_{Ne}) = 20 amu

The temperature of $He(T_{He}) = -73^{\circ}C = 200K$

The temperature of $Ne(T_{Ne}) = +727^{\circ}C = 1000K$

We know that;

K.E ∝ T

 $K.E_{He}$ / $K.E_{Ne}$ = T_{He} / T_{Ne} = 200 / 1000 = $\frac{1}{5}$

Now, the ratio of de Broglie's wavelengths of Ne and He $(\lambda_{He}/~\lambda_{Ne})$

 λ_{He} / λ_{Ne} = $\sqrt{2}$ K.E $_{Ne}$ m_{Ne} / $\sqrt{2}$ K.E $_{He}$ m_{He} = $\sqrt{5}$ / 1 x 20 / 4 = 5

 $\lambda_{He} = 5 \times \lambda_{Ne}$

The value of m is 5.